

Rétrofit ALCATEL AMS 4200

Mathieu ARRIBAT, Aurélie LECESTRE

Société NaPletSys

Journées Renatech Lithographie/Gravure

CRHEA, Valbonne 5 Juin 2024

Sommaire - Contexte

- Présentation de l'équipement
- Objectifs
- Actions menées
- Résultats
- Conclusion

Procédure achat :

PUMA CNRS n°2300972 (financement RTB)

Sociétés contactées : ApSy - NaPletSys

Société retenue : NaPletSys

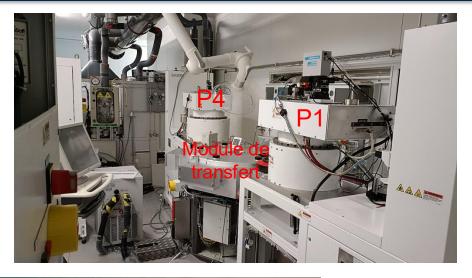
Agence Française SENTECH

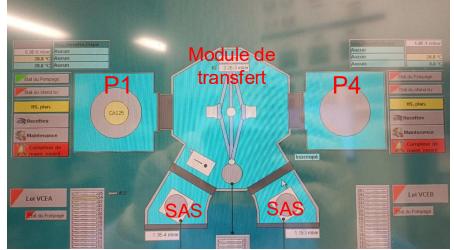
Présentation de l'équipement

Equipement installé en 2009, budget 870k€

Réacteurs	P1	P4	
Matériaux gravés	Silicium	Oxyde, verre, polymères	
Masque	Résines	Résine, Silicium, Métaux	
P _{icp max} (W)	5000	3000	
P _{bias max} (W)	500	1000	
Gaz	SF ₆ , C ₄ F ₈ , O ₂ , Ar, N ₂	C ₄ F ₈ , He, CH ₄ , O ₂ , Ar	
Clampage	Électrostatique 4"	Mécanique 4"	

Pas de support d'Alcatel → ACEMMI, NaPletSys





Présentation de l'équipement

Objectifs

> Problèmes de fiabilité :

- Problèmes fréquents = pannes très récurrentes des SAS, ordi (window XP), système de refroidissement et communication DeviceNet
- Immobilisation du système

> Solutions:

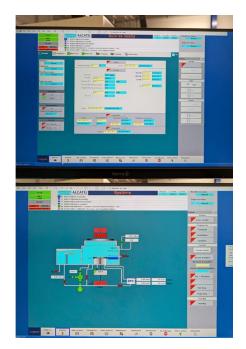
- Séparation des 2 réacteurs de gravure
- Possibilité de process Bosch sur P4 (back-up de P1)
- SAS avec 1 seul wafer.
- Nouveau pc : Window 11
- Changement de tous les tuyaux de refroidissement
- Maintenance préventive annuelle avec la société NaPletSys

> Objectifs / avantages

- Diminution coûts maintenances curatives
- Augmentation durée de vie (objectif 10 ans min)
- Coût moins élevé qu'un système neuf
- Démarche éco-responsable (émission de CO2)

Actions menées

- Séparation des réacteurs
- Démontage du module de transfert
- Installation d'une ligne de SF6 dans P4
- Changement des servitudes



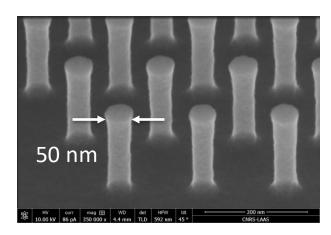
Actions menées

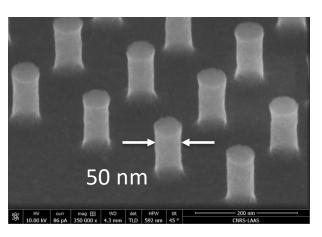
- Mise en place des nouveaux sas
- Installation de 2 nouveaux ordinateurs

Nouvelle interface sur windows 11

SAS du nouveau système Plus compact

1 réacteur avec sas



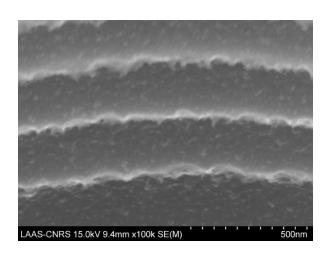

Résultats process dans réacteur P1

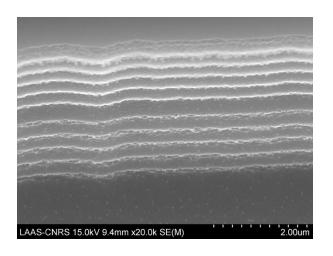
Exemple sur une recette de gravure de nanofils Si, hauteur entre 254 nm et 130 nm

Recette Pilier Si	Avant rétrofit	Après rétrofit
Temps de gravure (s)	115	60
Épaisseur de résine (nm)	90	90
Vitesse de gravure du Si (nm/s)	2,2	2,2
Sélectivité	5	5

Avant rétrofit

Après rétrofit





Résultats process dans réacteur P4

Exemple sur une recette de gravure Bosch Si avec la nouvelle ligne de SF6, hauteur 7,9µm

Recette: P4 Bosch			
Scallopping (nm)	250		
Vitesse de gravure du Si (μm/min)	3,45		
SF6/C4F8/O2	200/100/57		

Conclusion

- Problèmes de fiabilité :
 - Problèmes fréquents / récurrents communication

Immobilisation du système

Durée du rétrofit : 4 semaines sur site

- Solutions:
 - Séparation des 2 réacteurs de gravure
 - Possibilité de process Bosch sur P4 (back-up de P1)

- Objectifs / avantages
 - Diminution coûts maintenances curatives **A**

Augmentation durée de vie (objectif 10 ans min) 🛕

Coût moins élevé qu'un système neuf
✓ 140K€

Démarche éco-responsable (émission de CO2)

Merci pour votre attention

